Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of neural engineering ; h5-index 52.0

OBJECTIVE : Accurate detection of epileptic seizures using electroencephalogram (EEG) data is essential for epilepsy diagnosis, but the visual diagnostic process for clinical experts is a time-consuming task. To improve efficiency, some seizure detection methods have been proposed. Regardless of traditional or machine learning methods, the results identify only seizures and non-seizures. Our goal is not only to detect seizures but also to explain the basis for detection and provide reference information to clinical experts.

APPROACH : In this study, we follow the visual diagnosis mechanism used by clinical experts that directly processes plotted EEG image data and apply some commonly used models of LeNet, VGG, deep residual network (ResNet), and vision transformer (ViT) to the EEG image classification task. Before using these models, we propose a data augmentation method using random channel ordering (RCO), which adjusts the channel order to generate new images. The Gradient- weighted class activation mapping (Grad-CAM) and attention layer methods are used to interpret the models.

MAIN RESULTS : The RCO method can balance the dataset in seizure and non-seizure classes. The models achieved good performance in the seizure detection task. Moreover, the Grad-CAM and attention layer methods explained the detection basis of the model very well and calculate a value that measures the seizure degree.

SIGNIFICANCE : Processing EEG data in the form of images can flexibility to use a variety of machine learning models. The imbalance problem that exists widely in clinical practice is well solved by the RCO method. Since the method follows the visual diagnosis mechanism of clinical experts, the model interpretation results can be presented to clinical experts intuitively, and the quantitative information provided by the model is also a good diagnostic reference.

Zhao Xuyang, Yoshida Noboru, Ueda Tetsuya, Sugano Hidenori, Tanaka Toshihisa

2023-Jan-05

EEG, deep learning, epilepsy, seizure detection