Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in plant science

Light traps have been widely used for automatic monitoring of pests in the field as an alternative to time-consuming and labor-intensive manual investigations. However, the scale variation, complex background and dense distribution of pests in light-trap images bring challenges to the rapid and accurate detection when utilizing vision technology. To overcome these challenges, in this paper, we put forward a lightweight pest detection model, AgriPest-YOLO, for achieving a well-balanced between efficiency, accuracy and model size for pest detection. Firstly, we propose a coordination and local attention (CLA) mechanism for obtaining richer and smoother pest features as well as reducing the interference of noise, especially for pests with complex backgrounds. Secondly, a novel grouping spatial pyramid pooling fast (GSPPF) is designed, which enriches the multi-scale representation of pest features via fusing multiple receptive fields of different scale features. Finally, soft-NMS is introduced in the prediction layer to optimize the final prediction results of overlapping pests. We evaluated the performance of our method on a large scale multi pest image dataset containing 24 classes and 25k images. Experimental results show that AgriPest-YOLO achieves end-to-end real-time pest detection with high accuracy, obtaining 71.3% mAP on the test dataset, outperforming the classical detection models (Faster RCNN, Cascade RCNN, Dynamic RCNN,YOLOX and YOLOv4) and lightweight detection models (Mobilenetv3-YOLOv4, YOLOv5 and YOLOv4-tiny), meanwhile our method demonstrates better balanced performance in terms of model size, detection speed and accuracy. The method has good accuracy and efficiency in detecting multi-class pests from light-trap images which is a key component of pest forecasting and intelligent pest monitoring technology.

Zhang Wei, Huang He, Sun Youqiang, Wu Xiaowei

2022

YOLO, agricultural pest detection, attention mechanism, light trap, multi-scale