Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of biomedical imaging

This paper presents an automated and noninvasive technique to discriminate COVID-19 patients from pneumonia patients using chest X-ray images and artificial intelligence. The reverse transcription-polymerase chain reaction (RT-PCR) test is commonly administered to detect COVID-19. However, the RT-PCR test necessitates person-to-person contact to administer, requires variable time to produce results, and is expensive. Moreover, this test is still unreachable to the significant global population. The chest X-ray images can play an important role here as the X-ray machines are commonly available at any healthcare facility. However, the chest X-ray images of COVID-19 and viral pneumonia patients are very similar and often lead to misdiagnosis subjectively. This investigation has employed two algorithms to solve this problem objectively. One algorithm uses lower-dimension encoded features extracted from the X-ray images and applies them to the machine learning algorithms for final classification. The other algorithm relies on the inbuilt feature extractor network to extract features from the X-ray images and classifies them with a pretrained deep neural network VGG16. The simulation results show that the proposed two algorithms can extricate COVID-19 patients from pneumonia with the best accuracy of 100% and 98.1%, employing VGG16 and the machine learning algorithm, respectively. The performances of these two algorithms have also been collated with those of other existing state-of-the-art methods.

Islam Rumana, Tarique Mohammed

2022