Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy

Quick identification of paper types for customs is extremely crucial. Although there are a variety of researches focus on the discrimination of paper, these techniques either require complex preprocessing or large-scale instruments, which are not suitable for customs environments. In this study, we predicted the type of customs paper by using a Micro-NIR spectrometer, and compared the results with Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Four different classification algorithms, including linear and non-linear classifiers: K-nearest neighbor (KNN), soft independent modeling of class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA), and least squares-support vector machine (LS-SVM) were employed to classify the type of paper. 20 groups of datasets were selected by Monte Carlo sampling. For Micro-NIR data, the performances of KNN and LS-SVM were outstanding than SIMCA and PLS-DA, with the average accuracies 96.06% and 98.91%, respectively. The outcome of SIMCA and PLS-DA were similar, with the average accuracies 93.00% and 93.97%. Based on the standard derivation, the best stability of models was LS-SVM (1.06%), followed by PLS-DA (1.12%), KNN (1.22%) and SIMCA (3.07%). Compared with ATR-FTIR, the effects of Micro-NIR were better, which were embodies in the better KNN and SIMCA models, and the comparable LS-SVM model. The result demonstrated that the Micro-NIR combined with machine learning algorithms was an effective method to classify the type of customs paper efficiently and quickly, even better than ATR-FTIR.

Xia Jingjing, Min Shungeng, Li Jinyao

2022-Dec-23

Customs, Machine learning algorithms, Micro-NIR, Paper