Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of medical systems ; h5-index 48.0

Patient no-shows and suboptimal patient appointment length scheduling reduce clinical efficiency and impair the clinic's quality of service. The main objective of this study is to improve appointment scheduling in hospital outpatient clinics. We developed generic supervised machine learning models to predict patient no-shows and patient's length of appointment (LOA). We performed a retrospective study using more than 100,000 records of patient appointments in a hospital outpatient clinic. Several machine learning algorithms were used for the development of our prediction models. We trained our models on a dataset that contained patients', physicians', and appointments' characteristics. Our feature set combines both unstudied features and features adopted from previous studies. In addition, we identified the influential features for predicting LOA and no-show. Our LOA model's performance was 6.92 in terms of MAE, and our no-show model's performance was 92.1% in terms of F-score. We compared our models' performance to the performance of previous research models by applying their methods to our dataset; our models demonstrated better performance. We show that the major effector of such differences is the use of our novel features. To evaluate the effect of our prediction results on the quality of schedules produced by appointment systems (AS), we developed an interface layer between our prediction models and the AS, where prediction results comprise the AS input. Using our prediction models, there was an 80% improvement in the daily cumulative patient waiting time and a 33% reduction in the daily cumulative physician idle time.

Babayoff Orel, Shehory Onn, Geller Shamir, Shitrit-Niselbaum Chen, Weiss-Meilik Ahuva, Sprecher Eli

2022-Dec-31

Healthcare, Length of appointment, Machine learning, No-show, Prediction model, Scheduling