Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biosensors & bioelectronics

Cardiovascular Disease (CVD) is amongst the leading cause of death globally, which calls for rapid detection and treatment. Biosensing devices are used for the diagnosis of cardiovascular disease at the point-of-care (POC), with lateral flow assays (LFAs) being particularly useful. However, due to their low sensitivity, most LFAs have been shown to have difficulties detecting low analytic concentrations. Breakthroughs in artificial intelligence (AI) and image processing reduced this detection constraint and improved disease diagnosis. This paper presents a novel patches-selection approach for generating LFA images from the test line and control line of LFA images, analyzing the image features, and utilizing them to reliably predict and classify LFA images by deploying classification algorithms, specifically Convolutional Neural Networks (CNNs). The generated images were supplied as input data to the CNN model, a strong model for extracting crucial information from images, to classify the target images and provide risk stratification levels to medical professionals. With this approach, the classification model produced about 98% accuracy, and as per the literature review, this approach has not been investigated previously. These promising results show the proposed method may be useful for identifying a wide variety of diseases and conditions, including cardiovascular problems.

Fairooz Towfeeq, McNamee Sara E, Finlay Dewar, Ng Kok Yew, McLaughlin James

2022-Dec-26

Cardiac biomarker convolutional neural networks C-Reactive proteins, Deep learning image processing lateral flow assays point-of-care