Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of neural systems

Somatosensory evoked potential (SEP) has been commonly used as intraoperative monitoring to detect the presence of neurological deficits during scoliosis surgery. However, SEP usually presents an enormous variation in response to patient-specific factors such as physiological parameters leading to the false warning. This study proposes a prediction model to quantify SEP amplitude variation due to noninjury-related physiological changes of the patient undergoing scoliosis surgery. Based on a hybrid network of attention-based long-short-term memory (LSTM) and convolutional neural networks (CNNs), we develop a deep learning-based framework for predicting the SEP value in response to variation of physiological variables. The training and selection of model parameters were based on a 5-fold cross-validation scheme using mean square error (MSE) as evaluation metrics. The proposed model obtained MSE of 0.027[Formula: see text][Formula: see text] on left cortical SEP, MSE of 0.024[Formula: see text][Formula: see text] on left subcortical SEP, MSE of 0.031[Formula: see text][Formula: see text] on right cortical SEP, and MSE of 0.025[Formula: see text][Formula: see text] on right subcortical SEP based on the test set. The proposed model could quantify the affection from physiological parameters to the SEP amplitude in response to normal variation of physiology during scoliosis surgery. The prediction of SEP amplitude provides a potential varying reference for intraoperative SEP monitoring.

Fei Ningbo, Li Rong, Cui Hongyan, Hu Yong

2022-Dec-29

Somatosensory evoked potential (SEP), convolutional neural networks (CNNs), intraoperative monitoring, long-short-term memory (LSTM), prediction model, varying reference