Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Environmental monitoring and assessment

Farmland is the cornerstone of agriculture and is important for food security and social production. Farmland assessment is essential but traditional methods are usually expensive and slow. Deep learning methods have been developed and widely applied recently in image recognition, semantic understanding, and many other application domains. In this research, we used fully convolutional networks (FCN) as the deep learning model to evaluate farmland grades. Normalized difference vegetation index (NDVI) derived from Landsat images was used as the input data, and the China National Cultivated Land Grade Database within Jiangsu Province was used to train the model on cloud computing. We also applied an image segmentation method to improve the original results from the FCN and compared the results with classical machine learning (ML) methods. Our research found that the FCN can predict farmland grades with an overall F1 score (the harmonic mean of precision and recall) of 0.719 and F1 score of 0.909, 0.590, 0.740, 0.642, and 0.023 for non-farmland, level I, II, III, and IV farmland, respectively. Combining the FCN and image segmentation method can further improve prediction accuracy with results of fewer noise pixels and more realistic edges. Compared with conventional ML, at least in farmland evaluation, FCN provides better results with higher precision, recall, and F1 score. Our research indicates that by using remote sensing NDVI data, the deep learning method can provide acceptable farmland assessment without fieldwork and can be used as a novel supplement to traditional methods. The method used in this research will save a lot of time and cost compared with traditional means.

Wang Junxiao, Li Xingong, Wang Xiaorui, Zhou Shenglu, Luo Yanjun

2022-Dec-28

Big data, Deep learning, Farmland grades, Image segmentation, Remote sensing