Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Physiological measurement ; h5-index 36.0

Objective.Cooperation in the cardiorespiratory system helps maintain internal stability. Various types of system interactions have been investigated; however, the characteristics of the interactions have mostly been studied using data collected in well-defined physiological states, such as sleep. Furthermore, most analyses provided general information about the interaction, making it difficult to quantify how the systems influenced one another.Approach.Cardiorespiratory directional coupling was investigated in different age groups (20 young and 19 elderly subjects) in a wake-resting state. The directionality index (DI) was calculated using instantaneous phases from the heartbeat interval and respiratory signal to provide information about the strength and direction of interaction between the systems. Statistical analysis was performed between the groups on the DI and independent measures of directionality (ncr: influence from cardiac system to respiratory system, and ncc: influence from the respiratory system to the cardiac system).Main results.The values of DI were -0.52 and -0.17 in the young and elderly groups, respectively (p< 0.001). Furthermore, the values of ncrand nccwere found to be significantly different between the groups (p< 0.001), respectively.Significance.Changes in both directions between the systems influence different aspects of cardiorespiratory coupling between the groups. This observation could be linked to different levels of autonomic modulation associated with ageing. Our approach could aid in quantitatively tracking and comprehending how systems interact in response to physiological and environmental changes. It could also be used to understand how abnormal interaction characteristics influence physiological system dysfunctions and disorders.

Yoon Heenam

2022-Dec-28

cardiorespiratory system, coupling, directionality, electrocardiogram, nonlinear dynamics, respiratory signal