Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In iScience

Current methodologies to model connectivity in complex networks either rely on network scientists' intelligence to discover reliable physical rules or use artificial intelligence (AI) that stacks hundreds of inaccurate human-made rules to make a new one that optimally summarizes them together. Here, we provide an accurate and reproducible scientific analysis showing that, contrary to the current belief, stacking more good link prediction rules does not necessarily improve the link prediction performance to nearly optimal as suggested by recent studies. Finally, under the light of our novel results, we discuss the pros and cons of each current state-of-the-art link prediction strategy, concluding that none of the current solutions are what the future might hold for us. Future solutions might require the design and development of next generation "creative" AI that are able to generate and understand complex physical rules for us.

Muscoloni Alessandro, Cannistraci Carlo Vittorio

2023-Jan-20

Artificial intelligence, Network