In iScience
The research of AI-assisted breast diagnosis has primarily been based on static images. It is unclear whether it represents the best diagnosis image.To explore the method of capturing complementary responsible frames from breast ultrasound screening by using artificial intelligence. We used feature entropy breast network (FEBrNet) to select responsible frames from breast ultrasound screenings and compared the diagnostic performance of AI models based on FEBrNet-recommended frames, physician-selected frames, 5-frame interval-selected frames, all frames of video, as well as that of ultrasound and mammography specialists. The AUROC of AI model based on FEBrNet-recommended frames outperformed other frame set based AI models, as well as ultrasound and mammography physicians, indicating that FEBrNet can reach level of medical specialists in frame selection.FEBrNet model can extract video responsible frames for breast nodule diagnosis, whose performance is equivalent to the doctors selected responsible frames.
Chen Jing, Jiang Yitao, Yang Keen, Ye Xiuqin, Cui Chen, Shi Siyuan, Wu Huaiyu, Tian Hongtian, Song Di, Yao Jincao, Wang Liping, Huang Sijing, Xu Jinfeng, Xu Dong, Dong Fajin
2023-Jan-20
Artificial intelligence, Cancer, Computer-aided diagnosis method