Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational intelligence and neuroscience

Physiological status plays an important role in clinical diagnosis. However, the temporal physiological data change dynamically with time, and the amount of data is large; furthermore, obtaining a complete history of data has become difficult. We propose a hybrid intelligent scheme for physiological status prediction, which can be effectively utilized to predict the physiological status of patients and provide a reference for clinical diagnosis. Our proposed scheme initially extracted the attribute information of nonlinear dynamic changes in physiological signals. The maximum discriminant feature subset was selected by employing conditional relevance mutual information feature selection. An optimal subset of features was fed into the particle swarm optimization-support vector machine classifier to perform classification. For the prediction task, the proposed hybrid intelligent scheme was tested on the Sleep Heart Health Study dataset for sleep status prediction. Experimental results demonstrate that our proposed intelligent scheme outperforms the conventional machine learning classification methods.

Liu Na, Ma Chiyue, Xu Man, Ge Yun, Gan Dan

2022