Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Tomography (Ann Arbor, Mich.)

Radiologists assess the results of mammography, the key screening tool for the detection of breast cancer, to determine the presence of malignancy. They, routinely, compare recent and prior mammographic views to identify changes between the screenings. In case a new lesion appears in a mammogram, or a region is changing rapidly, it is more likely to be suspicious, compared to a lesion that remains unchanged and it is usually benign. However, visual evaluation of mammograms is challenging even for expert radiologists. For this reason, various Computer-Aided Diagnosis (CAD) algorithms are being developed to assist in the diagnosis of abnormal breast findings using mammograms. Most of the current CAD systems do so using only the most recent mammogram. This paper provides a review of the development of methods to emulate the radiological approach and perform automatic segmentation and/or classification of breast abnormalities using sequential mammogram pairs. It begins with demonstrating the importance of utilizing prior views in mammography, through the review of studies where the performance of expert and less-trained radiologists was compared. Following, image registration techniques and their application to mammography are presented. Subsequently, studies that implemented temporal analysis or subtraction of temporally sequential mammograms are summarized. Finally, a description of the open access mammography datasets is provided. This comprehensive review can serve as a thorough introduction to the use of prior information in breast cancer CAD systems but also provides indicative directions to guide future applications.

Loizidou Kosmia, Skouroumouni Galateia, Nikolaou Christos, Pitris Costas

2022-Dec-06

breast cancer, computer-aided detection, machine learning, mammography, review, sequential mammograms