Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational and structural biotechnology journal

Kidney stone disease (KSD) is a common illness caused by deposition of solid minerals formed inside the kidney. The disease prevalence varies, based on sociodemographic, lifestyle, dietary, genetic, gender, age, environmental and climatic factors, but has been continuously increasing worldwide. KSD is a highly recurrent disease, and the recurrence rate is about 11% within two years after the stone removal. Recently, machine learning has been widely used for KSD detection, stone type prediction, determination of appropriate treatment modality and prediction of therapeutic outcome. This review provides a brief overview of KSD and discusses how machine learning can be applied to diagnostics, therapeutics and prognostics in clinical management of KSD for better therapeutic outcome.

Sassanarakkit Supatcha, Hadpech Sudarat, Thongboonkerd Visith

2023

Artificial intelligence, Deep learning, Diagnostics, Outcome, Prognostics, Recurrence, Therapeutics