Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational and structural biotechnology journal

Lysine crotonylation (Kcr) is one of the most important post-translational modifications (PTMs) that is widely detected in both histone and non-histone proteins. In fact, Kcr is reported to be involved in various biological processes, such as metabolism and cell differentiation. However, the available experimental methods for Kcr site identification are laborious and costly. To effectively replace existing experimental approaches, some computational methods have been developed in the last few years. The available computational methods still lack some important aspects, as they can only identify Kcr sites on either histone-only or combined histone and nonhistone proteins. Although a tool was developed to identify Kcr sites on non-histone proteins only, its performance is inadequate and the exploration of hidden Kcr patterns (motifs) has been completely ignored, which might be significant for detailed Kcr studies. Therefore, algorithms that can more effectively predict Kcr sites on non-histone proteins with their biological meaning need to be designed. Accordingly, we developed a novel deep learning (capsule network)-based model, named CapsNh-Kcr, for Kcr site prediction, particularly focusing on non-histone proteins. Based on the independent results, the proposed model achieves an AUC of 0.9120, which is approximately 6% higher than that of previous nhKcr model in the prediction of Kcr sites on non-histone proteins. Further, we revealed, for the first time, that the proposed model can represent obvious motif distribution across Kcr sites in non-histone proteins. The source code (in Python) is publicly available at https://github.com/Jhabindra-bioinfo/CapsNh-Kcr.

Khanal Jhabindra, Kandel Jeevan, Tayara Hilal, Chong Kil To

2023

Capsule network, Deep learning, Lysine crotonylation (Kcr), Motifs, Web-server