In Clinica chimica acta; international journal of clinical chemistry
Cancer-associated necrosis is a well-known source of cell-free DNA (cfDNA). However, the origins of cfDNA are not strictly limited to cancer. Additionally, dietary exposure induces apoptosis-induced proliferation in adipocytes, leading to the release of cfDNA. The genetic information derived from cfDNA as a result of apoptosis-induced proliferation contains specific methylation patterns in adipose tissue that can be used as a marker to detect the risk of developing Type 2 diabetes Mellitus (T2DM) in the future. cfDNA is superior to peripheral blood leukocytes (PBL) and whole blood samples for reflecting tissue pathology due to the frequent use of PBL and whole blood samples that do not match tissue pathology. The difficulty of demonstrating that cfDNA is derived from adipose tissue. We propose several promising techniques by analyzing cfDNA derived from adipose tissue to detect T2DM risk. First, adipose-specific genes such as ADIPOQ and Leptin were utilized. Second, MCTA-Seq, EpiSCORE, deconvolution, multiplexing, and automated machine learning (AutoML) were used to determine the proportion of total methylation in related genes.
Martriano Humardani Farizky, Thalia Mulyanata Lisa, Emantoko Dwi Putra Sulistyo
2022-Dec-19
T2DM, adipose tissue, apoptosis, cfDNA, methylation