Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The Science of the total environment

Ozone (O3) is an important greenhouse gas in the atmosphere. Stratospheric ozone protects human beings, but high near-surface ozone concentrations threaten environment and human health. Owing to the uneven distribution of ground-monitoring stations and the low time resolution of polar orbiting satellites, it is difficult to accurately evaluate the refinement and synergistic pollution of near-surface ozone in China. Besides, atmospheric circulation patterns also affect ozone concentrations greatly. In this study, a new generation of geostationary satellite is used to estimate the hourly near-surface ozone concentration with a spatial resolution of 0.05°. First, the Pearson correlation coefficient and maximum information coefficient were used to study the correlation between the top of atmospheric radiation (TOAR) of Himawari-8 satellite and O3 concentration; seven TOAR channels were selected. Second, based on an interpretable deep learning model, the hourly ozone concentration in China from September 2015 to August 2021 was obtained using the TOAR-O3 model. Finally, the self-organizing map method was used to determine six major summer weather circulation patterns in China. The results showed that (1) the near-surface O3 concentration can be accurately estimated; the R2 (RMSE: μg/m3) values of the daily, monthly, and annual tenfold cross validation results were 0.91 (12.74), 0.97 (5.64), and 0.98 (1.75), respectively. The feature importance of the model showed that the temperature, TOAR, and boundary layer height contributed 38 %, 22 %, and 13 %, respectively. (2) The O3 concentration showed obvious spatiotemporal difference and gradually increased from 10:00 to 15:00 (Beijing time) every day. In most areas of China, O3 concentration had increased significantly. (3) The O3 concentration in northern China was the highest under the circulation pattern of the Meiyu front over the Yangtze River Delta, while in southern China, it was the highest under the circulation pattern of the northeast cold vortex controlling most of China.

Bin Chen, Wang Yixuan, Huang Jianping, Zhao Lin, Chen Ruming, Song Zhihao, Hu Jiashun

2022-Dec-17

Deep forest model, Near-surface ozone concentration, Pollution trend, Self-organizing map, Weather circulation patterns