Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Applied soft computing

COVID-19 raised the need for automatic medical diagnosis, to increase the physicians' efficiency in managing the pandemic. Among all the techniques for evaluating the status of the lungs of a patient with COVID-19, lung ultrasound (LUS) offers several advantages: portability, cost-effectiveness, safety. Several works approached the automatic detection of LUS imaging patterns related COVID-19 by using deep neural networks (DNNs). However, the decision processes based on DNNs are not fully explainable, which generally results in a lack of trust from physicians. This, in turn, slows down the adoption of such systems. In this work, we use two previously built DNNs as feature extractors at the frame level, and automatically synthesize, by means of an evolutionary algorithm, a decision tree (DT) that aggregates in an interpretable way the predictions made by the DNNs, returning the severity of the patients' conditions according to a LUS score of prognostic value. Our results show that our approach performs comparably or better than previously reported aggregation techniques based on an empiric combination of frame-level predictions made by DNNs. Furthermore, when we analyze the evolved DTs, we discover properties about the DNNs used as feature extractors. We make our data publicly available for further development and reproducibility.

Custode Leonardo Lucio, Mento Federico, Tursi Francesco, Smargiassi Andrea, Inchingolo Riccardo, Perrone Tiziano, Demi Libertario, Iacca Giovanni


COVID-19, Decision trees, Evolutionary algorithms, Grammatical evolution, Lung ultrasound, Neuro-symbolic artificial intelligence