Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Medical image analysis

Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, obtaining similar results to established non-learning approaches. Many current deep learning approaches are not data consistent, require in vivo training data or solve the QSM problem in consecutive steps resulting in the propagation of errors. Here we aim to overcome these limitations and developed a framework to solve the QSM processing steps jointly. We developed a new hybrid training data generation method that enables the end-to-end training for solving background field correction and dipole inversion in a data-consistent fashion using a variational network that combines the QSM model term and a learned regularizer. We demonstrate that NeXtQSM overcomes the limitations of previous deep learning methods. NeXtQSM offers a new deep learning based pipeline for computing quantitative susceptibility maps that integrates each processing step into the training and provides results that are robust and fast.

Cognolato Francesco, O’Brien Kieran, Jin Jin, Robinson Simon, Laun Frederik B, Barth Markus, Bollmann Steffen

2022-Nov-23

Data-consistent deep learning, Electromagnetic tissue properties, Magnetic susceptibility, Simulated training data