In Cancer treatment reviews
Artificial intelligence (AI) has experienced explosive growth in oncology and related specialties in recent years. The improved expertise in data capture, the increased capacity for data aggregation and analytic power, along with decreasing costs of genome sequencing and related biologic "omics", set the foundation and need for novel tools that can meaningfully process these data from multiple sources and of varying types. These advances provide value across biomedical discovery, diagnosis, prognosis, treatment, and prevention, in a multimodal fashion. However, while big data and AI tools have already revolutionized many fields, medicine has partially lagged due to its complexity and multi-dimensionality, leading to technical challenges in developing and validating solutions that generalize to diverse populations. Indeed, inner biases and miseducation of algorithms, in view of their implementation in daily clinical practice, are increasingly relevant concerns; critically, it is possible for AI to mirror the unconscious biases of the humans who generated these algorithms. Therefore, to avoid worsening existing health disparities, it is critical to employ a thoughtful, transparent, and inclusive approach that involves addressing bias in algorithm design and implementation along the cancer care continuum. In this review, a broad landscape of major applications of AI in cancer care is provided, with a focus on cancer research and precision medicine. Major challenges posed by the implementation of AI in the clinical setting will be discussed. Potentially feasible solutions for mitigating bias are provided, in the light of promoting cancer health equity.
Corti Chiara, Cobanaj Marisa, Dee Edward C, Criscitiello Carmen, Tolaney Sara M, Celi Leo A, Curigliano Giuseppe
2022-Dec-11
Artificial intelligence, Bias, Decision support, Equity, Outcome prediction, Precision medicine