In European radiology ; h5-index 62.0
OBJECTIVE : To investigate performance of 1-mm, sharp kernel, low-dose chest computed tomography (LDCT) for coronary artery calcium scoring (CACS) using deep learning (DL)-based denoising technique.
METHODS : This retrospective, intra-individual comparative study consisted of four image datasets of 131 participants who underwent LDCT and calcium CT on the same day between January and February 2020; 1-mm LDCT with DL, 1-mm LDCT with iterative reconstruction (IR), 3-mm LDCT, and calcium CT. CACS from calcium CT were considered as reference and CACS were categorized as 0, 1-10, 11-100, 101-400, and > 400. We compared CACS from LDCTs with that from calcium CT.
RESULTS : Mean CACS was 104.8 ± 249.1 and proportion of positive CACS was 45% (59/131). CACS from LDCT images tended to be underestimated than those from calcium CT: 1-mm LDCT with DL (93.5 ± 249.6, p = 0.002), 1-mm LDCT with IR (94.7 ± 249.9, p < 0.001), and 3-mm LDCT (90.3 ± 245.3, p = 0.004). All LDCT datasets showed excellent agreement with calcium CT: intraclass correlation coefficient (ICC) = 0.961 (95% confidence interval (CI), 0.945-0.972) for DL, 0.969 (95% CI, 0.956-0.978) for IR, and 0.952 (95% CI, 0.932-0.966) for 3-mm LDCT; weighted kappa for CACS classification, 0.930 (95% CI, 0.893-0.966) for 1-mm LDCT with DL, 0.908 (95% CI, 0.866-0.950) for 1-mm LDCT with IR, and 0.846 (95% CI, 0.780-0.912) for 3-mm LDCT. The accuracy of CACS classification of 1-mm LDCT with DL (90%) tended to be better than 1-mm LDCT with IR (87%) and 3-mm LDCT (84.7%) (p = 0.10).
CONCLUSION : DL-based noise reduction algorithm can offer reliable calcium scores in 1-mm LDCT reconstructed with sharp kernel.
KEY POINTS : • Deep learning (DL)-based noise reduction enables calcium scoring at 1-mm, sharp kernel reconstructed low-dose chest CT (LDCT). • Both iterative reconstruction and DL-based noise reduction underestimated calcium score, but agreement were excellent with those from calcium CT. • Accuracy of categorical classification of calcium scoring tended to be highest in 1-mm LDCT with DL compared to 1-mm LDCT with IR and 3-mm LDCT (90%, 87%, and 84.7%, p = 0.10).
Choi Hyewon, Park Eun-Ah, Ahn Chulkyun, Kim Jong-Hyo, Lee Whal, Jeong Baren
2022-Dec-15
Coronary artery disease, Deep learning, Image processing, Computer-assisted, Tomography, X-ray computed