In NeuroImage. Clinical
Prognosis of primary pontine hemorrhage (PPH) is important for treatment planning and patient management. However, only few clinical factors were reported to have prognostic value to PPH. Here, we propose a deep learning (DL) model that mines high-dimensional prognostic information from computed tomography (CT) images and combines clinical factors for predicting individualized prognosis of PPH. We proposed a multi-task DL model to learn high-dimensional CT features of hematoma and perihematomal areas for predicting the risk of 30-day mortality, 90-day mortality and 90-day functional outcome of PPH simultaneously. We further explored the combination of the DL model and clinical factors by building a combined model. All the models were trained in a training cohort (n = 219) and tested in an independent testing cohort (n = 35). The DL model achieved area under the curve (AUC) of 0.886, 0.886, and 0.759 in predicting 30-day mortality, 90-day mortality and 90-day functional outcome of PPH in the independent testing cohort, which improved over the previously reported new PPH score and the clinical model. When combining the DL model and clinical factors, the combined model achieved improved performance (AUC = 0.920, 0.941, and 0.894), indicating that DL model mines CT information that complements clinical factors. Through DL visualization technique, we found that the internal structure of hematoma and its expansion to perihematomal regions are important for predicting the prognosis of PPH. This DL model provides an easy-to-use way for predicting individualized prognosis of PPH by mining high-dimensional information from CT images, and showed improvement over clinical factors and present methods.
Wang Shuo, Chen Feng, Zhang Mingyu, Zhao Xiaolin, Wen Linghua, Wu Wenyuan, Wu Shina, Li Zhe, Tian Jie, Liu Tao
2022
Computed tomography, Deep learning, Intracerebral hemorrhage, Primary pontine hemorrhage, Prognosis