Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computers & industrial engineering

Currently, the global spread of COVID-19 is taking a heavy toll on the lives of the global population. There is an urgent need to improve and strengthen the coordination of vaccine supply chains in response to this severe pandemic. In this study, we consider a closed-loop vaccine supply chain based on a combination of artificial intelligence and blockchain technologies and model the supply chain as a two-player dynamic game with inventory level as the dynamic equation of the system. The study focuses on the applicability and effectiveness of the two technologies in the vaccine supply chain and provides management insights. The impact of the application of the technologies on environmental performance is also considered in the model. We also examine factors such as the number of people vaccinated, positive and side effects of vaccines, vaccine decay rate, revenue-sharing/cost-sharing ratio, and commission ratio. The results are as follows: the correlation between the difficulty in obtaining certified vaccines and the profit of a vaccine manufacturer is not monotonous; the vaccine manufacturer is more sensitive to changes in the vaccine attenuation rate. The study's major conclusions are as follows: First, the vaccine supply chain should estimate the level of consumers' difficulty in obtaining a certified vaccine source and the magnitude of the production planning and demand forecasting error terms before adopting the two technologies. Second, the application of artificial intelligence (AI) technology is meaningful in the vaccine supply chain when the error terms satisfy a particular interval condition.

Gao Ye, Gao Hongwei, Xiao Han, Yao Fanjun

2022-Dec-05

AI technology, Blockchain technology, Differential game, Supply chain management, Vaccine supply chain