In Bioresource technology
In the context of advocating carbon neutrality, there are new requirements for sustainable management of municipal sludge (MS). Hydrothermal carbonization (HTC) is a promising technology to deal with high-moisture MS considering its low energy consumption (without drying pretreatment) and value-added products (i.e., hydrochar). This study applied machine learning (ML) methods to conduct a holistic assessment with higher heating value (HHV) of hydrochar, carbon recovery (CR), and energy recovery (ER) as model targets, yielding accurate prediction models with R2 of 0.983, 0.844 and 0.858, respectively. Furthermore, MS properties showed positive (e.g., carbon content, HHV) and negative (e.g., ash content, O/C, and N/C) influences on the hydrochar HHV. By comparison, HTC parameters play a critical role for CR (51.7%) and ER (52.5%) prediction. The primary sludge was an optimal HTC feedstock while anaerobic digestion sludge had the lowest potential. This study provided a comprehensive reference for sustainable MS treatment and industrial application.
Zhu Xinzhe, Liu Bingyou, Sun Lianpeng, Li Ruohong, Deng Huanzhong, Zhu Xiefei, Tsang Daniel C W
2022-Dec-08
Biochar technology, Hydrothermal carbonization, Machine learning, Municipal sludge, Sustainable waste management