Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European journal of radiology ; h5-index 47.0

The ultimate goals of the application of artificial intelligence (AI) to digital breast tomosynthesis (DBT) are the reduction of reading times, the increase of diagnostic performance, and the reduction of interval cancer rates. In this review, after outlining the journey from computer-aided detection/diagnosis systems to AI applied to digital mammography (DM), we summarize the results of studies where AI was applied to DBT, noting that long-term advantages of DBT screening and its crucial ability to decrease the interval cancer rate are still under scrutiny. AI has shown the capability to overcome some shortcomings of DBT in the screening setting by improving diagnostic performance and by reducing recall rates (from -2 % to -27 %) and reading times (up to -53 %, with an average 20 % reduction), but the ability of AI to reduce interval cancer rates has not yet been clearly investigated. Prospective validation is needed to assess the cost-effectiveness and real-world impact of AI models assisting DBT interpretation, especially in large-scale studies with low breast cancer prevalence. Finally, we focus on the incoming era of personalized and risk-stratified screening that will first see the application of contrast-enhanced breast imaging to screen women with extremely dense breasts. As the diagnostic advantage of DBT over DM was concentrated in this category, we try to understand if the application of AI to DM in the remaining cohorts of women with heterogeneously dense or non-dense breast could close the gap in diagnostic performance between DM and DBT, thus neutralizing the usefulness of AI application to DBT.

Magni Veronica, Cozzi Andrea, Schiaffino Simone, Colarieti Anna, Sardanelli Francesco

2022-Dec-02

Artificial intelligence, Breast cancer screening, Deep learning, Digital breast tomosynthesis, Digital mammography