In Bioresource technology
Biorefinery systems are playing pivotal roles in the technological support of resource efficiency for circular bioeconomy. Meanwhile, artificial intelligence presents great potential in handling scientific tasks of high-dimensional complexity. This review article scrutinizes the status of machine learning (ML) applications in four critical biorefinery systems (i.e. composting, fermentation, anaerobic digestion, and thermochemical conversions) as well as their advancements against traditional modeling techniques of mechanistic approach. The contents cover their algorithm selections, modeling challenges, and prospective improvements. Perspectives are sketched to further inform collective efforts on crucial aspects. The multidisciplinary interchange of modeling knowledge will enable a more progressive digital transformation of sustainability efforts in supporting sustainable development goals.
Tsui To-Hung, van Loosdrecht Mark C M, Dai Yanjun, Wah Tong Yen
2022-Dec-03
Biorefinery, Multiscale modeling, Resource recovery, Supply chain, Sustainability