Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of psychiatric research ; h5-index 59.0

Evidence suggests that psychopathology is associated with an advanced brain ageing process, typically mapped using machine learning models that predict an individual's age based on structural neuroimaging data. The brain predicted age difference (brain-PAD) captures the deviation of brain age from chronological age. Substantial heterogeneity between studies has introduced uncertainty regarding the magnitude of the brain-PAD in adult psychopathology. The present meta-analysis aimed to quantify structural MRI-based brain-PAD in adult psychotic and mood disorders, while addressing possible sources of heterogeneity related to diagnosis subtypes, segmentation method, age and sex. Clinical factors influencing brain ageing in axis 1 psychiatric disorders were systematically reviewed. Thirty-three studies were included for review. A random-effects meta-analysis revealed a brain-PAD of +3.12 (standard error = 0.49) years in psychotic disorders (n = 16 studies), +2.04 (0.10) years in bipolar disorder (n = 5), and +0.90 (0.20) years in major depression (n = 7). An exploratory meta-analysis found a brain-PAD of +1.57 (0.67) in first episode psychosis (n = 4), which was smaller than that observed in psychosis and schizophrenia (n = 10, +3.87 (0.61)). Patient mean age significantly explained heterogeneity in effect size estimates in psychotic disorders, but not mood disorders. The systematic review determined that clinical factors, such as higher symptom severity, may be associated with a larger brain-PAD in psychopathology. In conclusion, larger structural MRI-based brain-PAD was confirmed in adult psychopathology. Preliminary evidence was obtained that brain ageing is greater in those with prolonged duration of psychotic disorders. Accentuated brain ageing may underlie the cognitive difficulties experienced by some patients, and may be progressive in nature.

Blake Kimberly V, Ntwatwa Ziphozihle, Kaufmann Tobias, Stein Dan J, Ipser Jonathan C, Groenewold Nynke A

2022-Nov-14

Biological age, Brain morphometry, Diffusion tensor imaging, Machine learning, Mental illness