Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Environmental science & technology ; h5-index 132.0

Forecasting environmental hazards is critical in preventing or building resilience to their impacts on human communities and ecosystems. Environmental data science is an emerging field that can be harnessed for forecasting, yet more work is needed to develop methodologies that can leverage increasingly large and complex data sets for decision support. Here, we design a data-driven framework that can, for the first time, forecast bacterial standard exceedances at marine beaches with 3 days lead time. Using historical data sets collected at two California sites, we train nearly 400 forecast models using statistical and machine learning techniques and test forecasts against predictions from both a naive "persistence" model and a baseline nowcast model. Overall, forecast models are found to have similar sensitivities and specificities to the persistence model, but significantly higher areas under the ROC curve (a metric distinguishing a model's ability to effectively parse classes across decision thresholds), suggesting that forecasts can provide enhanced information beyond past observations alone. Forecast model performance at all lead times was similar to that of nowcast models. Together, results suggest that integrating the forecasting framework developed in this study into beach management programs can enable better public notification and aid in proactive pollution and health risk management.

Searcy Ryan T, Boehm Alexandria B

2022-Dec-06

data-driven models, machine learning, water quality forecasting