In Annals of translational medicine
BACKGROUND : Coronary angiography (CAG) is usually performed in patients with coronary heart disease (CHD) to evaluate the coronary artery stenosis. However, patients with iodine allergy and renal dysfunction are not suitable for CAG. We try to develop a radiomics machine learning model based on rest 13N-ammonia (13N-NH3) positron emission tomography (PET) myocardial perfusion imaging (MPI) to predict coronary stenosis.
METHODS : Eighty-four patients were included with the inclusion criteria: adult patients; suspected CHD; resting MPI and CAG were performed; and complete data. Coronary artery stenosis >75% were considered to be significant stenosis. Patients were randomly divided into a training group and a testing group with a ratio of 1:1. Myocardial blood flow (MBF), perfusion defect extent (EXT), total perfusion deficit (TPD), and summed rest score (SRS) were obtained. Myocardial static images of the left ventricular (LV) coronary segments were segmented, and radiomics features were extracted. In the training set, the conventional parameter (MPI model) and radiomics (Rad model) models were constructed using the machine learning method and were combined to construct a nomogram. The models' performance was evaluated by area under the curve (AUC), accuracy, sensitivity, specificity, decision analysis curve (DCA), and calibration curves. Testing and subgroup analysis were performed.
RESULTS : MPI model was composed of MBF and EXT, and Rad model was composed of 12 radiomics features. In the training set, the AUC/accuracy/sensitivity/specificity of the MPI model, Rad model, and the nomogram were 0.795/0.778/0.937/0.511, 0.912/0.825/0.760/0.936 and 0.911/0.865/0.924/0.766 respectively. In the testing set, the AUC/accuracy/sensitivity/specificity of the MPI model, Rad model, and the nomogram were 0.798/0.722/0.659/0.841, 0.887/0.810/0.744/0.932 and 0.900/0.849/0.854/0.841 respectively. The AUC of Rad model and nomogram were significantly higher than that of MPI model. The DCA curve also showed that the clinical net benefit of the Rad model and nomogram was similar but greater than that of MPI model. The calibration curve showed good agreement between the observed and predicted values of the Rad model. In the subgroup analysis of Rad model, there was no significant difference in AUC between subgroups.
CONCLUSIONS : The Rad model is more accurate than the MPI model in predicting coronary stenosis. This noninvasive technique could help improve risk stratification and had good generalization ability.
Zhang Xiaochun, Sun Taotao, Liu Entao, Xu Weiping, Wang Shuxia, Wang Quanshi
2022-Nov
13N-ammonia, Coronary heart disease (CHD), coronary artery stenosis, myocardial perfusion imaging (MPI), radiomics