Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings of SPIE--the International Society for Optical Engineering

Microchannel formation is known to be a significant marker of plaque vulnerability, plaque rupture, and intraplaque hemorrhage, which are responsible for plaque progression. We developed a fully-automated method for detecting microchannels in intravascular optical coherence tomography (IVOCT) images using deep learning. A total of 3,075 IVOCT image frames across 41 patients having 62 microchannel segments were analyzed. Microchannel was manually annotated by expert cardiologists, according to previously established criteria. In order to improve segmentation performance, pre-processing including guidewire detection/removal, lumen segmentation, pixel-shifting, and noise filtering was applied to the raw (r,θ) IVOCT image. We used the DeepLab-v3 plus deep learning model with the Xception backbone network for identifying microchannel candidates. After microchannel candidate detection, each candidate was classified as either microchannel or no-microchannel using a convolutional neural network (CNN) classification model. Our method provided excellent segmentation of microchannel with a Dice coefficient of 0.811, sensitivity of 92.4%, and specificity of 99.9%. We found that pre-processing and data augmentation were very important to improve results. In addition, a CNN classification step was also helpful to rule out false positives. Furthermore, automated analysis missed only 3% of frames having microchannels and showed no false positives. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive evaluations of vulnerable plaques and treatments. We believe that this method is promising for both research and clinical applications.

Lee Juhwan, Kim Justin N, Pereira Gabriel T R, Gharaibeh Yazan, Kolluru Chaitanya, Zimin Vladislav N, Dallan Luis A P, Motairek Issam K, Hoori Ammar, Guagliumi Giulio, Bezerra Hiram G, Wilson David L

2022

Intravascular optical coherence tomography, classification, deep learning, microchannel, segmentation