In Computational intelligence and neuroscience
Image processing is an important domain for identifying various crop varieties. Due to the large amount of rice and its varieties, manually detecting its qualities is a very tedious and time-consuming task. In this work, we propose a two-stage deep learning framework for detecting and classifying multiclass rice grain varieties. A series of steps is included in the proposed framework. The first step is to perform preprocessing on the selected dataset. The second step involves selecting and fine-tuning pretrained deep models from Darknet19 and SqueezeNet. Transfer learning is used to train the fine-tuned models on the selected dataset. The 50% sample images are employed for the training and rest 50% are used for the testing. Features are extracted and fused using a maximum correlation-based approach. This approach improved the classification performance; however, redundant information has also been included. An improved butterfly optimization algorithm (BOA) is proposed, in the next step, for the selection of the best features that are finally classified using several machine learning classifiers. The experimental process was conducted on selected rice datasets that include five types of rice varieties and achieves a maximum accuracy of 100% that was improved than the recent method. The average accuracy of the proposed method is obtained at 99.2%, through confidence interval-based analysis that shows the significance of this work.
Fatima Maryam, Khan Muhammad Attique, Sharif Muhammad, Alhaisoni Majed, Alqahtani Abdullah, Tariqe Usman, Kim Ye Jin, Chang Byoungchol
2022