In Frontiers in medicine
Viral-host protein-protein interaction (VHPPI) prediction is essential to decoding molecular mechanisms of viral pathogens and host immunity processes that eventually help to control the propagation of viral diseases and to design optimized therapeutics. Multiple AI-based predictors have been developed to predict diverse VHPPIs across a wide range of viruses and hosts, however, these predictors produce better performance only for specific types of hosts and viruses. The prime objective of this research is to develop a robust meta predictor (MP-VHPPI) capable of more accurately predicting VHPPI across multiple hosts and viruses. The proposed meta predictor makes use of two well-known encoding methods Amphiphilic Pseudo-Amino Acid Composition (APAAC) and Quasi-sequence (QS) Order that capture amino acids sequence order and distributional information to most effectively generate the numerical representation of complete viral-host raw protein sequences. Feature agglomeration method is utilized to transform the original feature space into a more informative feature space. Random forest (RF) and Extra tree (ET) classifiers are trained on optimized feature space of both APAAC and QS order separate encoders and by combining both encodings. Further predictions of both classifiers are utilized to feed the Support Vector Machine (SVM) classifier that makes final predictions. The proposed meta predictor is evaluated over 7 different benchmark datasets, where it outperforms existing VHPPI predictors with an average performance of 3.07, 6.07, 2.95, and 2.85% in terms of accuracy, Mathews correlation coefficient, precision, and sensitivity, respectively. To facilitate the scientific community, the MP-VHPPI web server is available at https://sds_genetic_analysis.opendfki.de/MP-VHPPI/.
Asim Muhammad Nabeel, Fazeel Ahtisham, Ibrahim Muhammad Ali, Dengel Andreas, Ahmed Sheraz
2022
Ebola virus, H1N1 virus, SARSCoV-2, feature agglomeration, meta predictor, virus-host protein-protein interaction