Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biomedical signal processing and control

BACKGROUND : and ObjectivIn the current COVID-19 outbreak, efficient testing of COVID-19 individuals has proven vital to limiting and arresting the disease's accelerated spread globally. It has been observed that the severity and mortality ratio of COVID-19 affected patients is at greater risk because of chronic pulmonary diseases. This study looks at radiographic examinations exploiting chest X-ray images (CXI), which have become one of the utmost feasible assessment approaches for pulmonary disorders, including COVID-19. Deep Learning(DL) remains an excellent image classification method and framework; research has been conducted to predict pulmonary diseases with COVID-19 instances by developing DL classifiers with nine class CXI. However, a few claim to have strong prediction results; because of noisy and small data, their recommended DL strategies may suffer from significant deviation and generality failures.

METHODS : Therefore, a unique CNN model(PulDi-COVID) for detecting nine diseases (atelectasis, bacterial-pneumonia, cardiomegaly, covid19, effusion, infiltration, no-finding, pneumothorax, viral-Pneumonia) using CXI has been proposed using the SSE algorithm. Several tranfer-learning models: VGG16, ResNet50, VGG19, DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2, DenseNet169 are trained on CXI of chronic lung diseases and COVID-19 instances. Given that the proposed thirteen SSE ensemble models solved DL's constraints by making predictions with different classifiers rather than a single, we present PulDi-COVID, an ensemble DL model that combines DL with ensemble learning. The PulDi-COVID framework is created by incorporating various snapshots of DL models, which have spearheaded chronic lung diseases with COVID-19 cases identification process with a deep neural network produced CXI by applying a suggested SSE method. That is familiar with the idea of various DL perceptions on different classes.

RESULTS : PulDi-COVID findings were compared to thirteen existing studies for nine-class classification using COVID-19. Test results reveal that PulDi-COVID offers impressive outcomes for chronic diseases with COVID-19 identification with a 99.70% accuracy, 98.68% precision, 98.67% recall, 98.67% F1 score, lowest 12 CXIs zero-one loss, 99.24% AUC-ROC score, and lowest 1.33% error rate. Overall test results are superior to the existing Convolutional Neural Network(CNN). To the best of our knowledge, the observed results for nine-class classification are significantly superior to the state-of-the-art approaches employed for COVID-19 detection. Furthermore, the CXI that we used to assess our algorithm is one of the larger datasets for COVID detection with pulmonary diseases.

CONCLUSION : The empirical findings of our suggested approach PulDi-COVID show that it outperforms previously developed methods. The suggested SSE method with PulDi-COVID can effectively fulfill the COVID-19 speedy detection needs with different lung diseases for physicians to minimize patient severity and mortality.

Bhosale Yogesh H, Sridhar Patnaik K

2022-Nov-30

Biomedical engineering, COVID-19, Chronic Pulmonary disease, Convolution neural networks (CNN), Diagnosis & Classification, Ensemble deep learning, Transfer learning