Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

Radiological images have shown promising effects in patient prognostication. Deep learning provides a powerful approach for in-depth analysis of imaging data and integration of multi-modal data for modeling. In this work, we propose SurvivalCNN, a deep learning structure for cancer patient survival prediction using CT imaging data and non-imaging clinical data. In SurvivalCNN, a supervised convolutional neural network is designed to extract volumetric image features, and radiomics features are also integrated to provide potentially different imaging information. Within SurvivalCNN, a novel multi-thread multi-layer perceptron module, namely, SurvivalMLP, is proposed to perform survival prediction from censored survival data. We evaluate the proposed SurvivalCNN framework on a large clinical dataset of 1061 gastric cancer patients for both overall survival (OS) and progression-free survival (PFS) prediction. We compare SurvivalCNN to three different modeling methods and examine the effects of various sets of data/features when used individually or in combination. With five-fold cross validation, our experimental results show that SurvivalCNN achieves averaged concordance index 0.849 and 0.783 for predicting OS and PFS, respectively, outperforming the compared state-of-the-art methods and the clinical model. After future validation, the proposed SurvivalCNN model may serve as a clinical tool to improve gastric cancer patient survival estimation and prognosis analysis.

Hao Degan, Li Qiong, Feng Qiu-Xia, Qi Liang, Liu Xi-Sheng, Arefan Dooman, Zhang Yu-Dong, Wu Shandong

2022-Dec

Deep learning, Gastric cancer, Medical image, Multi-modal data, Survival prediction