In Scientific reports ; h5-index 158.0
This work attempted to construct a new metal artifact reduction (MAR) framework in kilo-voltage (kV) computed tomography (CT) images by combining (1) deep learning and (2) multi-modal imaging, defined as MARTIAN (Metal Artifact Reduction throughout Two-step sequentIAl deep convolutional neural Networks). Most CNNs under supervised learning require artifact-free images to artifact-contaminated images for artifact correction. Mega-voltage (MV) CT is insensitive to metal artifacts, unlike kV CT due to different physical characteristics, which can facilitate the generation of artifact-free synthetic kV CT images throughout the first network (Network 1). The pairs of true kV CT and artifact-free kV CT images after post-processing constructed a subsequent network (Network 2) to conduct the actual MAR process. The proposed framework was implemented by GAN from 90 scans for head-and-neck and brain radiotherapy and validated with 10 independent cases against commercial MAR software. The artifact-free kV CT images following Network 1 and post-processing led to structural similarity (SSIM) of 0.997, and mean-absolute-error (MAE) of 10.2 HU, relative to true kV CT. Network 2 in charge of actual MAR successfully suppressed metal artifacts, relative to commercial MAR, while retaining the detailed imaging information, yielding the SSIM of 0.995 against 0.997 from the commercial MAR.
Kim Hojin, Yoo Sang Kyun, Kim Dong Wook, Lee Ho, Hong Chae-Seon, Han Min Cheol, Kim Jin Sung
2022-Dec-02