Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of human kinetics

Acute kidney injury (AKI) is frequently seen in ultrarunners, and in this study, an AKI prediction model for 24-hour ultrarunners was built based on the runner's prerace blood, urine, and body composition data. Twenty-two ultrarunners participated in the study. The risk of acquiring AKI was evaluated by a support vector machine (SVM) model, which is a statistical model commonly used for classification tasks. The inputs of the SVM model were the data collected 1 hour before the race, and the output of the SVM model was the decision of acquiring AKI. Our best AKI prediction model achieved accuracy of 96% in training and 90% in cross-validation tests. In addition, the sensitivity and specificity of the model were 90% and 100%, respectively. In accordance with the AKI prediction model components, ultra-runners are suggested to have high muscle mass and undergo regular ultra-endurance sports training to reduce the risk of acquiring AKI after participating in a 24-hour ultramarathon.

Hsu Po-Ya, Hsu Yi-Chung, Liu Hsin-Li, Fong Kao Wei, Lin Kuan-Yu

2022-Oct

acute kidney injury, extreme sports, injury prevention, machine learning