Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In NeuroImage. Clinical

White matter hyperintensities (WMH) are frequently observed in brain scans of elderly people. They are associated with an increased risk of stroke, cognitive decline, and dementia. However, it is unknown yet if measures of WMH provide information that improve the understanding of poststroke outcome compared to only state-of-the-art stereotaxic structural lesion data. We implemented high-dimensional machine learning models, based on support vector regression, to predict the severity of spatial neglect in 103 acute right hemispheric stroke patients. We found that (1) the additional information of right hemispheric or bilateral voxel-based topographic WMH extent indeed yielded a significant improvement in predicting acute neglect severity (compared to the voxel-based stroke lesion map alone). (2) Periventricular WMH appeared more relevant for prediction than deep subcortical WMH. (3) Among different measures of WMH, voxel-based maps as measures of topographic extent allowed more accurate predictions compared to the use of traditional ordinally assessed visual rating scales (Fazekas-scale, Cardiovascular Health Study-scale). In summary, topographic WMH appear to be a valuable clinical imaging biomarker for predicting the severity of cognitive deficits and bears great potential for rehabilitation guidance of acute stroke patients.

Röhrig Lisa, Sperber Christoph, Bonilha Leonardo, Rorden Christopher, Karnath Hans-Otto

2022-Nov-11

Imaging biomarker, Leukoaraiosis, Machine learning, Spatial attention, Support vector regression, White matter lesions