In Computers, informatics, nursing : CIN
Americans bear a high chronic stress burden, particularly during the COVID-19 pandemic. Although social media have many strengths to complement the weaknesses of conventional stress measures, including surveys, they have been rarely utilized to detect individuals self-reporting chronic stress. Thus, this study aimed to develop and evaluate an automatic system on Twitter to identify users who have self-reported chronic stress experiences. Using the Twitter public streaming application programming interface, we collected tweets containing certain stress-related keywords (eg, "chronic," "constant," "stress") and then filtered the data using pre-defined text patterns. We manually annotated tweets with (without) self-report of chronic stress as positive (negative). We trained multiple classifiers and tested them via accuracy and F1 score. We annotated 4195 tweets (1560 positives, 2635 negatives), achieving an inter-annotator agreement of 0.83 (Cohen's kappa). The classifier based on Bidirectional Encoder Representation from Transformers performed the best (accuracy of 83.6% [81.0-86.1]), outperforming the second best-performing classifier (support vector machines: 76.4% [73.5-79.3]). The past tweets from the authors of positive tweets contained useful information, including sources and health impacts of chronic stress. Our study demonstrates that users' self-reported chronic stress experiences can be automatically identified on Twitter, which has a high potential for surveillance and large-scale intervention.
Yang Yuan-Chi, Xie Angel, Kim Sangmi, Hair Jessica, Al-Garadi Mohammed, Sarker Abeed
2022-Nov-28