In International journal of medical informatics ; h5-index 49.0
BACKGROUND : Physicians follow-up a symptom-based approach in the diagnosis of psychiatric diseases. According to this approach, a process based on internationally valid diagnostic tools such as The Diagnostic and Statistical Manual of Mental Disorders (DSM) or International Classification of Diseases (ICD), patient reports and the observation and experience of the physician is monitored. As in other fields of medicine, the search for biomarkers that can be used in processes related to diseases continues in psychiatry and various researches are carried out in this field.
OBJECTIVES : Within the scope of this study, a dataset containing electroencephalogram (EEG) measurements of individuals diagnosed with different psychiatric diseases were analyzed by machine learning methods and the diseases were differentiated/classified with the models obtained. Thus, it was investigated whether EEG data could be a biomarker for psychiatric diseases.
MATERIALS AND METHODS : In the dataset analyzed within the scope of the study, for 550 patients (81 bipolar disorder, 95 attention deficit and hyperactivity disorder - ADHD, 67 depression, 34 obsessive compulsive disorder - OCD, 75 opioid, 146 posttraumatic stress disorder - PTSD, 52 schizophrenia) and 84 healthy individuals, there are 634 samples (rows), 77 variables (columns) in total. 76 of the variables consist of absolute power values belonging to 4 frequency bands (alpha, beta, delta, theta) collected from 19 different electrodes. 80 % of the dataset was used for training the models and 20 % of the data was used for testing the performance of the models. The 5-fold cross validation (CV) method, which repeats 3 times in the training dataset, was used and with this method, the hyperparameters used in the models were also optimized. Different models have been established with the selected hyperparameters and the performance of these models has been tested with the test dataset. C5.0, random forest (RF), support vector machine (SVM) and artificial neural networks (ANN) were used to build the models.
RESULTS : Within the scope of the study, the absolute power values obtained from EEG measurements performed using 19 electrodes were analyzed by machine learning methods. It was concluded that classification between disease groups was feasible with a high accuracy (C5.0-0.841, SVM_radial - 0.841, RF - 0.762). It was observed that ADHD, depression and schizophrenia diseases can be differentiated better (F-score = 1, balanced accuracy = 1) once the results were evaluated on a class category basis according to the F- measure and balanced accuracy values.
DISCUSSION AND CONCLUSION : Through the medium of the analyzes made within the scope of this study, it was investigated whether EEG data could be used as a biomarker for the detection and diagnosis of psychiatric diseases. The findings obtained from this study revealed that by using EEG data as a biomarker, it can be highly predicted whether a person has a psychiatric disease or not. Once evaluated with broad strokes, it is feasible to assert that it is possible to analyze whether the person who consults a physician with a complaint is ranked among the psychiatric disease class with EEG measurement. When trying to differentiate between numerous and diverse disease categories, it may be claimed that some diseases (ADHD, depression, schizophrenia) can be distinguished better by coming to the fore on a model basis. Considering the findings, it is anticipated that the analyzes obtained as a result of this study will contribute to the studies to be conducted using machine learning in the field of psychiatry.
Emre İlkim Ecem, Erol Çiğdem, Taş Cumhur, Tarhan Nevzat
2022-Nov-12
Biomarker, EEG (Electroencephalogram), Evidence-based diagnosis, Machine learning, Model-based diagnosis, Psychiatric diseases