In The Journal of arthroplasty ; h5-index 65.0
BACKGROUND : Supervised machine learning techniques have been increasingly applied to predict patient outcomes after hip and knee arthroplasty procedures. The purpose of this study was to systematically review the applications of supervised machine learning techniques to predict patient outcomes after primary total hip and knee arthroplasty.
METHODS : A comprehensive literature search using the electronic databases MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews was conducted in July of 2021. The inclusion criteria were studies that utilized supervised machine learning techniques to predict patient outcomes after primary total hip or knee arthroplasty.
RESULTS : Search criteria yielded n = 30 relevant studies. Topics of study included patient complications (n = 6), readmissions (n = 1), revision (n = 2), patient-reported outcome measures (n = 4), patient satisfaction (n = 4), inpatient status and length of stay (LOS) (n = 9), opioid usage (n = 3), and patient function (n = 1). Studies involved TKA (n = 12), THA (n = 11), or a combination (n = 7). Less than 35% of predictive outcomes had an area under the receiver operating characteristic curve (AUC) in the excellent or outstanding range. Additionally, only 9 of the studies found improvement over logistic regression, and only 9 studies were externally validated.
CONCLUSION : Supervised machine learning algorithms are powerful tools that have been increasingly applied to predict patient outcomes after total hip and knee arthroplasty. However, these algorithms should be evaluated in the context of prognostic accuracy, comparison to traditional statistical techniques for outcome prediction, and application to populations outside the training set. While machine learning algorithms have been received with considerable interest, they should be critically assessed and validated prior to clinical adoption.
Karlin Elan A, Lin Charles C, Meftah Morteza, Slover James D, Schwarzkopf Ran
2022-Oct-29
artificial intelligence, logistic regression, machine learning, patient outcomes, total hip arthroplasty, total knee arthroplasty