Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Medical image analysis

Breast cancer is one of the most common causes of death among women worldwide. Early signs of breast cancer can be an abnormality depicted on breast images (e.g., mammography or breast ultrasonography). However, reliable interpretation of breast images requires intensive labor and physicians with extensive experience. Deep learning is evolving breast imaging diagnosis by introducing a second opinion to physicians. However, most deep learning-based breast cancer analysis algorithms lack interpretability because of their black box nature, which means that domain experts cannot understand why the algorithms predict a label. In addition, most deep learning algorithms are formulated as a single-task-based model that ignores correlations between different tasks (e.g., tumor classification and segmentation). In this paper, we propose an interpretable multitask information bottleneck network (MIB-Net) to accomplish simultaneous breast tumor classification and segmentation. MIB-Net maximizes the mutual information between the latent representations and class labels while minimizing information shared by the latent representations and inputs. In contrast from existing models, our MIB-Net generates a contribution score map that offers an interpretable aid for physicians to understand the model's decision-making process. In addition, MIB-Net implements multitask learning and further proposes a dual prior knowledge guidance strategy to enhance deep task correlation. Our evaluations are carried out on three breast image datasets in different modalities. Our results show that the proposed framework is not only able to help physicians better understand the model's decisions but also improve breast tumor classification and segmentation accuracy over representative state-of-the-art models. Our code is available at https://github.com/jxw0810/MIB-Net.

Wang Junxia, Zheng Yuanjie, Ma Jun, Li Xinmeng, Wang Chongjing, Gee James, Wang Haipeng, Huang Wenhui

2022-Nov-12

Breast cancer diagnosis, Dual prior knowledge guidance strategy, Information bottleneck, Interpretable deep learning, Multitask learning