Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In BMC medical informatics and decision making ; h5-index 38.0

BACKGROUND : Machine learning (ML) algorithms have been trained to early predict critical in-hospital events from COVID-19 using patient data at admission, but little is known on how their performance compares with each other and/or with statistical logistic regression (LR). This prospective multicentre cohort study compares the performance of a LR and five ML models on the contribution of influencing predictors and predictor-to-event relationships on prediction model´s performance.

METHODS : We used 25 baseline variables of 490 COVID-19 patients admitted to 8 hospitals in Germany (March-November 2020) to develop and validate (75/25 random-split) 3 linear (L1 and L2 penalty, elastic net [EN]) and 2 non-linear (support vector machine [SVM] with radial kernel, random forest [RF]) ML approaches for predicting critical events defined by intensive care unit transfer, invasive ventilation and/or death (composite end-point: 181 patients). Models were compared for performance (area-under-the-receiver-operating characteristic-curve [AUC], Brier score) and predictor importance (performance-loss metrics, partial-dependence profiles).

RESULTS : Models performed close with a small benefit for LR (utilizing restricted cubic splines for non-linearity) and RF (AUC means: 0.763-0.731 [RF-L1]); Brier scores: 0.184-0.197 [LR-L1]). Top ranked predictor variables (consistently highest importance: C-reactive protein) were largely identical across models, except creatinine, which exhibited marginal (L1, L2, EN, SVM) or high/non-linear effects (LR, RF) on events.

CONCLUSIONS : Although the LR and ML models analysed showed no strong differences in performance and the most influencing predictors for COVID-19-related event prediction, our results indicate a predictive benefit from taking account for non-linear predictor-to-event relationships and effects. Future efforts should focus on leveraging data-driven ML technologies from static towards dynamic modelling solutions that continuously learn and adapt to changes in data environments during the evolving pandemic.

TRIAL REGISTRATION NUMBER : NCT04659187.

Sievering Aaron W, Wohlmuth Peter, Geßler Nele, Gunawardene Melanie A, Herrlinger Klaus, Bein Berthold, Arnold Dirk, Bergmann Martin, Nowak Lorenz, Gloeckner Christian, Koch Ina, Bachmann Martin, Herborn Christoph U, Stang Axel

2022-Nov-28

COVID-19, Clinical decision-making, Critical event prediction, Machine learning, Predictive models