In PeerJ. Computer science
Large-scale and complex mission environments require unmanned aerial vehicles (UAVs) to deal with various types of missions while considering their operational and dynamic constraints. This article proposes a deep learning-based heterogeneous mission planning algorithm for a single UAV. We first formulate a heterogeneous mission planning problem as a vehicle routing problem (VRP). Then, we solve this by using an attention-based deep reinforcement learning approach. Attention-based neural networks are utilized as they have powerful computational efficiency in processing the sequence data for the VRP. For the input to the attention-based neural networks, the unified feature representation on heterogeneous missions is introduced, which encodes different types of missions into the same-sized vectors. In addition, a masking strategy is introduced to be able to consider the resource constraint (e.g., flight time) of the UAV. Simulation results show that the proposed approach has significantly faster computation time than that of other baseline algorithms while maintaining a relatively good performance.
Jung Minjae, Oh Hyondong
2022
Attention mechanism, Deep reinforcement learning, Mission planning, Neural Networks, Vehicle routing problem