Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Communications medicine

BACKGROUND : Clinical decisions are mainly driven by the ability of physicians to apply risk stratification to patients. However, this task is difficult as it requires complex integration of numerous parameters and is impacted by patient heterogeneity. We sought to evaluate the ability of transplant physicians to predict the risk of long-term allograft failure and compare them to a validated artificial intelligence (AI) prediction algorithm.

METHODS : We randomly selected 400 kidney transplant recipients from a qualified dataset of 4000 patients. For each patient, 44 features routinely collected during the first-year post-transplant were compiled in an electronic health record (EHR). We enrolled 9 transplant physicians at various career stages. At 1-year post-transplant, they blindly predicted the long-term graft survival with probabilities for each patient. Their predictions were compared with those of a validated prediction system (iBox). We assessed the determinants of each physician's prediction using a random forest survival model.

RESULTS : Among the 400 patients included, 84 graft failures occurred at 7 years post-evaluation. The iBox system demonstrates the best predictive performance with a discrimination of 0.79 and a median calibration error of 5.79%, while physicians tend to overestimate the risk of graft failure. Physicians' risk predictions show wide heterogeneity with a moderate intraclass correlation of 0.58. The determinants of physicians' prediction are disparate, with poor agreement regardless of their clinical experience.

CONCLUSIONS : This study shows the overall limited performance and consistency of physicians to predict the risk of long-term graft failure, demonstrated by the superior performances of the iBox. This study supports the use of a companion tool to help physicians in their prognostic judgement and decision-making in clinical care.

Divard Gillian, Raynaud Marc, Tatapudi Vasishta S, Abdalla Basmah, Bailly Elodie, Assayag Maureen, Binois Yannick, Cohen Raphael, Zhang Huanxi, Ulloa Camillo, Linhares Kamila, Tedesco Helio S, Legendre Christophe, Jouven Xavier, Montgomery Robert A, Lefaucheur Carmen, Aubert Olivier, Loupy Alexandre

2022-Nov-23