Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biomimetics (Basel, Switzerland)

Current deep-learning-based cervical cell classification methods suffer from parameter redundancy and poor model generalization performance, which creates challenges for the intelligent classification of cervical cytology smear images. In this paper, we establish a method for such classification that combines transfer learning and knowledge distillation. This new method not only transfers common features between different source domain data, but also realizes model-to-model knowledge transfer using the unnormalized probability output between models as knowledge. A multi-exit classification network is then introduced as the student network, where a global context module is embedded in each exit branch. A self-distillation method is then proposed to fuse contextual information; deep classifiers in the student network guide shallow classifiers to learn, and multiple classifier outputs are fused using an average integration strategy to form a classifier with strong generalization performance. The experimental results show that the developed method achieves good results using the SIPaKMeD dataset. The accuracy, sensitivity, specificity, and F-measure of the five classifications are 98.52%, 98.53%, 98.68%, 98.59%, respectively. The effectiveness of the method is further verified on a natural image dataset.

Gao Wenjian, Xu Chuanyun, Li Gang, Zhang Yang, Bai Nanlan, Li Mengwei

2022-Nov-10

cervical cells, context information, deep learning, ensemble, image classification, knowledge distillation, self-distillation, transfer learning