Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Cognitive neurodynamics

The research on a brain-like model with bio-interpretability is conductive to promoting its information processing ability in the field of artificial intelligence. Biological results show that the synaptic time-delay can improve the information processing abilities of the nervous system, which are an important factor related to the formation of brain cognitive functions. However, the synaptic plasticity with time-delay of a brain-like model still lacks bio-interpretability. In this study, combining excitatory and inhibitory synapses, we construct the complex spiking neural networks (CSNNs) with synaptic time-delay that more conforms biological characteristics, in which the topology has scale-free property and small-world property, and the nodes are represented by an Izhikevich neuron model. Then, the information processing abilities of CSNNs with different types of synaptic time-delay are comparatively evaluated based on the anti-interference function, and the mechanism of this function is discussed. Using two indicators of the anti-interference function and three kinds of noise, our simulation results consistently verify that: (i) From the perspective of anti-interference function, an CSNN with synaptic random time-delay outperforms an CSNN with synaptic fixed time-delay, which in turn outperforms an CSNN with synaptic none time-delay. The results imply that brain-like networks with more bio-interpretable synaptic time-delay have stronger information processing abilities. (ii) The synaptic plasticity is the intrinsic factor of the anti-interference function of CSNNs with different types of synaptic time-delay. (iii) The synaptic random time-delay makes an CSNN present better topological characteristics, which can improve the information processing ability of a brain-like network. It implies that synaptic time-delay is a factor that affects the anti-interference function at the level of performance.

Guo Lei, Zhang Sijia, Wu Youxi, Xu Guizhi

2022-Dec

Anti-interference, Complex network, Spiking neural network, Synaptic plasticity, Synaptic time-delay