Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Surgical innovation

INTRODUCTION : Trauma patients have diverse resource needs due to variable mechanisms and injury patterns. The aim of this study was to build a tool that uses only data available at time of admission to predict prolonged hospital length of stay (LOS).

METHODS : Data was collected from the trauma registry at an urban level one adult trauma center and included patients from 1/1/2014 to 3/31/2019. Trauma patients with one or fewer days LOS were excluded. Single layer and deep artificial neural networks were trained to identify patients in the top quartile of LOS and optimized on area under the receiver operator characteristic curve (AUROC). The predictive performance of the model was assessed on a separate test set using binary classification measures of accuracy, precision, and error.

RESULTS : 2953 admitted trauma patients with more than one-day LOS were included in this study. They were 70% male, 60% white, and averaged 47 years-old (SD: 21). 28% were penetrating trauma. Median length of stay was 5 days (IQR 3-9). For prediction of prolonged LOS, the deep neural network achieved an AUROC of 0.80 (95% CI: 0.786-0.814) specificity was 0.95, sensitivity was 0.32, with an overall accuracy of 0.79.

CONCLUSION : Machine learning can predict, with excellent specificity, trauma patients who will have prolonged length of stay with only physiologic and demographic data available at the time of admission. These patients may benefit from additional resources with respect to disposition planning at the time of admission.

Stonko David P, Weller Jennine H, Gonzalez Salazar Andres J, Abdou Hossam, Edwards Joseph, Hinson Jeremiah, Levin Scott, Byrne James P, Sakran Joseph V, Hicks Caitlin W, Haut Elliott R, Morrison Jonathan J, Kent Alistair J

2022-Nov-17

artificial neural networks, length of stay, machine-learning, predictive modeling, trauma surgery