Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Nucleic acids research ; h5-index 217.0

Massively parallel reporter assay (MPRA) is a high-throughput method that enables the study of the regulatory activities of tens of thousands of DNA oligonucleotides in a single experiment. While MPRA experiments have grown in popularity, their small sample sizes compared to the scale of the human genome limits our understanding of the regulatory effects they detect. To address this, we develop a deep learning model, MpraNet, to distinguish potential MPRA targets from the background genome. This model achieves high discriminative performance (AUROC = 0.85) at differentiating MPRA positives from a set of control variants that mimic the background genome when applied to the lymphoblastoid cell line. We observe that existing functional scores represent very distinct functional effects, and most of them fail to characterize the regulatory effect that MPRA detects. Using MpraNet, we predict potential MPRA functional variants across the genome and identify the distributions of MPRA effect relative to other characteristics of genetic variation, including allele frequency, alternative functional annotations specified by FAVOR, and phenome-wide associations. We also observed that the predicted MPRA positives are not uniformly distributed across the genome; instead, they are clumped together in active regions comprising 9.95% of the genome and inactive regions comprising 89.07% of the genome. Furthermore, we propose our model as a screen to filter MPRA experiment candidates at genome-wide scale, enabling future experiments to be more cost-efficient by increasing precision relative to that observed from previous MPRAs.

Lu Fred, Sossin Aaron, Abell Nathan, Montgomery Stephen B, He Zihuai

2022-Nov-09