Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In BMC musculoskeletal disorders ; h5-index 46.0

BACKGROUND : The analysis of sagittal intervertebral rotational motion (SIRM) can provide important information for the evaluation of cervical diseases. Deep learning has been widely used in spinal parameter measurements, however, there are few investigations on spinal motion analysis. The purpose of this study is to develop a deep learning-based model for fully automated measurement of SIRM based on flexion-neutral-extension cervical lateral radiographs and to evaluate its applicability for the flexion-extension (F/E), flexion-neutral (F/N), and neutral-extension (N/E) motion analysis.

METHODS : A total of 2796 flexion, neutral, and extension cervical lateral radiographs from 932 patients were analyzed. Radiographs from 100 patients were randomly selected as the test set, and those from the remaining 832 patients were used for training and validation. Landmarks were annotated for measuring SIRM at five segments from C2/3 to C6/7 on F/E, F/N, and N/E motion. High-Resolution Net (HRNet) was used as the main structure to train the landmark detection network. Landmark performance was assessed according to the percentage of correct key points (PCK) and mean of the percentage of correct key points (MPCK). Measurement performance was evaluated by intra-class correlation coefficient (ICC), Pearson correlation coefficient, mean absolute error (MAE), root mean square error (RMSE), and Bland-Altman plots.

RESULTS : At a 2-mm distance threshold, the PCK for the model ranged from 94 to 100%. Compared with the reference standards, the model showed high accuracy for SIRM measurements for all segments on F/E and F/N motion. On N/E motion, the model provided reliable measurements from C3/4 to C6/7, but not C2/3. Compared with the radiologists' measurements, the model showed similar performance to the radiologists.

CONCLUSIONS : The developed model can automatically measure SIRM on flexion-neutral-extension cervical lateral radiographs and showed comparable performance with radiologists. It may provide rapid, accurate, and comprehensive information for cervical motion analysis.

Yan Yuting, Zhang Xinsheng, Meng Yu, Shen Qiang, He Linyang, Cheng Guohua, Gong Xiangyang

2022-Nov-08

Automated measurement, Cervical spine, Deep learning, Motion analysis, Radiography