Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Accident; analysis and prevention

Accurate crash frequency prediction is critical for proactive safety management. The emerging connected vehicles technology provides us with a wealth of vehicular motion data, which enables a better connection between crash frequency and driving behaviors. However, appropriately dealing with the spatial dependence of crash frequency and multitudinous driving features has been a difficult but critical challenge in the prediction process. To this end, this study aims to investigate a new Artificial Intelligence technique called Geographical Random Forest (GRF) that can address spatial heterogeneity and retain all potential predictors. By harnessing more than 2.2 billion high-resolution connected vehicle Basic Safety Message (BSM) observations from the Safety Pilot Model Deployment in Ann Arbor, MI, 30 indicators of driving volatility are extracted, including speed, longitudinal and lateral acceleration, and yaw rate. The developed GRF was implemented to predict rear-end crash frequency at intersections. The results show that: 1) rear-end crashes are more likely to happen at intersections connecting minor roads compared to major roads; 2) a higher number of hard acceleration and deceleration events beyond two standard deviations in the longitudinal direction is a leading indicator of rear-end crashes; 3) the optimal GRF significantly outperforms Global Random Forest, with a 9% lower test error and a substantially better fit; and 4) geographical visualization of variable importance highlights the presence of spatial non-stationarity. The proposed framework can proactively identify at-risk intersections and alert drivers when leading indicators of driving volatility tend to worsen.

Gu Yangsong, Liu Diyi, Arvin Ramin, Khattak Asad J, Han Lee D

2022-Nov-04

Connected vehicle, Crash frequency prediction, Geographical random forest, Variable importance